$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$109.3(1)$	$\mathrm{C} 7-\mathrm{C} 18-\mathrm{C} 19$	$94.2(2)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 19$	$85.4(1)$	$\mathrm{C} 8-\mathrm{C} 19-\mathrm{C} 18$	$94.8(2)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 19$	$119.2(2)$		

Structure solution and refinement were performed using the SDP (Frenz, 1978) program package on a VAXII/730 computer. Molecular structures were plotted using the PLUTO program (Motherwell \& Clegg, 1978).

Lists of structure factors, anisotropic displacement parameters, H -atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71521 (28 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH 12 HU , England. [CIF reference: HA1052]

References

Cookson, R. C., Hill, R. R. \& Hudec, J. (1964). J. Chem. Soc. pp. 3043-3062.
Frenz, B. A. (1978). The Enraf-Nonius CAD-4 SDP - A Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution. Computing in Crystallography, edited by H . Schenk, R. Olthof-Hazekamp, H. van Koningsveld \& G. C. Bassi, pp. 64-71. Delft Univ. Press.
Mehta, G., Padma, S., Karra, S. R., Gopidas, K. R., Cyr, D. R., Das, P. K. \& George, M. V. (1989). J. Org. Chem. 4, 1342-1346.
Mehta, G., Padma, S., Pattabhi, V., Pramanik, A. \& Chandrasekhar, J. (1990). J. Am. Chem. Soc. 112, 2942-2949.
Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO. Program for Plotting Molecular and Crystal Structures. Univ. of Cambridge, England.
Zachariasen, W., H. (1963). Acta Cryst. 16, 1139-1144.

Acta Cryst. (1994). C50, 597-601

2,2'-Di-O-acetyl-3,6;3',6'-dianhydro-4,4'-dideoxy- α, α-trehalose

C. K. Lee and L. L. Koh
Department of Chemistry, Faculty of Science, National University of Singapore, Singapore 0511

(Received 17 March 1993; accepted 10 August 1993)

Abstract

The structure of $2,2^{\prime}$-di- O-acetyl- 3,$6 ; 3^{\prime}, 6^{\prime}$-dianhydro-4,4'-dideoxy- α, α-trehalose ($2-O$-acetyl-3,6-anhydro-4-deoxy- α-D-xylo-hexopyranosyl 2-O-acetyl-3,6-an-hydro-4-deoxy- α-D-xylo-hexopyranoside), $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{9}$, is described. The molecule has approximate twofold symmetry through $\mathrm{O}(1)$. Both pyranoid rings have distorted ${ }^{1} C_{4}$ chair conformations and the five-membered anhydro rings have distorted ${ }^{4} E$ conformations. The structure of the compound appears to show the absence of a sweet $A \mathrm{H}, B$ gluco-

phore, which would explain the absence of sweetness in the unsubstituted derivative.

Comment

The Shallenberger $A \mathrm{H}, B$ theory of swectness (Shallenberger \& Acree, 1967) suggests that the fundamental unit of sweetness is an $A \mathrm{H}, B$ system, where A and B are electronegative atoms in suitable geometric proximity. The Kier extension to the $A \mathrm{H}, B$ concept (Kier, 1972) is that a third hydrophilic (γ) binding site, if present, will increase the intensity of the sweet taste. The ideal molecule for taste studies in sugars is probably α, α-trehalose. It contains two chemically equivalent glucopyranose residues in the most stable ${ }^{4} C_{1}$ conformation, linked glycosidically through their reducing (anomeric) C atoms. Stability is high in the sugar and its derivatives because all the hydroxyl substituents are equatorially disposed. Because the interatomic distances are of great importance in determining sweetness, we have undertaken the X-ray crystal diffraction study of α, α-trehalose derivatives.
A SHELXTL-Plus (Sheldrick, 1990) XP plot of 2,2'-di-O-acetyl-3,6;3',6'-dianhydro-4,4'-dideoxyα, α-trehalose (Birch, Lee \& Richardson, 1974) (1) with the atomic numbering scheme is shown in Fig. 1 , and the molecular packing in the crystal is shown in Fig. 2. Like α, α-trehalose, the two glucopyranosyl residues of (1) have approximate C_{2} symmetry but the structural differences between the two residues are much smaller. Differences are found in the torsion angles about the glycosidic O atom, especially those involving $C(2)$ and $C\left(2^{\prime}\right)$ (Table 3), and in the conformation of the $\mathrm{C}(2)$ and $\mathrm{C}\left(2^{\prime}\right)$ acetyl groups.

(1)

Bond lengths, bond angles and selected torsion angles are given in Tables 2 and 3. Bond lengths and angles agree well with those of methyl 3,6 -anhydro-α-D-hexopyranosides (Lindberg, Lindberg \& Svensson, 1973; Campbell \& Harding, 1972), and most other pyranose sugars (Berman, Chu \& Jeffrey, 1967). The $\mathrm{O}(1)-\mathrm{C}(1)$ and $\mathrm{O}(1)-\mathrm{C}\left(1^{\prime}\right)$ bond lengths show systematic trends similar to those observed in other α-pyranose sugars (Berman, Chu \& Jeffrey, 1967) but are shorter than those in α, α-trehalose (Brown, Rohrer, Berking, Beevers, Gould \& Simpson, 1972; Taga, Senma \& Osaki, 1972; Jeffrey \& Nanni, 1985) and its 3,3-dideoxy derivative (Lee \&

Fig. 1. Molecular conformation of $2,2^{\prime}$-di- O-acetyl-3,6; $3^{\prime}, 6^{\prime}-$ dianhydro-4,4'-dideoxy- α, α-trehalose.

Fig. 2. Molecular packing in 2,2'-di-O-acetyl-3,6;3', 6^{\prime}-dianhydro-4,4'-dideoxy- α, α-trehalose.

Koh, 1993). The small $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ angles [98.6 (6) (unprimed), 97.8 (7) ${ }^{\circ}$ (primed)], which are also observed in 3,6-anhydro- α-D-hexopyranoside derivatives (Lindberg, Lindberg \& Svensson, 1973; Campbell \& Harding, 1972; Isaac \& Kennard, 1972), are a consequence of strain introduced by the cisfused five-membered anhydro ring. This strain also causes the $\mathrm{C}(3) \cdots \mathrm{C}(5)$ and $\mathrm{C}(3) \cdots \mathrm{C}\left(5^{\prime}\right)$ distances ($\sim 2.3 \AA$) to be shorter by $\sim 0.2 \AA$ than those found for an unbridged pyranose ring. The distances between the axial $\mathrm{O}(2)$ and $\mathrm{H}\left(4_{\text {axiat }}\right)$, and $\mathrm{O}\left(2^{\prime}\right)$ and $\mathrm{H}\left(4^{\prime}{ }_{\text {axial }}\right)$ are also similarly narrowed ($\sim 2.5 \AA$).

Both the pyranosyl rings have ${ }^{1} C_{4}$ conformations with torsion angles defined by the six ring bonds

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.			
x	y	z	U_{eq}
$0.1337(8)$	$1.1587(7)$	$0.3831(3)$	$0.043(2)$
$0.2294(8)$	$1.0526(7)$	$0.4207(3)$	$0.043(2)$
$0.3536(8)$	$1.1439(8)$	$0.4550(3)$	$0.051(2)$
$0.2700(8)$	$1.2636(8)$	$0.4889(3)$	$0.050(2)$
$0.2213(9)$	$1.3670(8)$	$0.4413(3)$	$0.051(3)$
$0.3751(9)$	$1.3731(8)$	$0.4075(3)$	$0.064(3)$
$0.0736(9)$	$0.8327(8)$	$0.4471(3)$	$0.052(3)$
$-0.0536(11)$	$0.7819(9)$	$0.4874(3)$	$0.082(3)$
$-0.0119(5)$	$1.0871(5)$	$0.3677(2)$	$0.048(2)$
$0.1229(5)$	$0.9775(5)$	$0.4606(2)$	$0.047(2)$
$0.4498(5)$	$1.2259(6)$	$0.4152(2)$	$0.057(2)$
$0.0895(5)$	$1.2986(5)$	$0.4109(2)$	$0.052(2)$
$0.1291(7)$	$0.7629(5)$	$0.4088(2)$	$0.074(2)$
$-0.1071(8)$	$1.1653(8)$	$0.3295(3)$	$0.046(2)$
$-0.2716(9)$	$1.0891(9)$	$0.3256(3)$	$0.057(3)$
$-0.3601(10)$	$1.1440(10)$	$0.2736(4)$	$0.079(4)$
$-0.2595(12)$	$1.1069(11)$	$0.2221(3)$	$0.090(4)$
$-0.1264(10)$	$1.2241(11)$	$0.2312(3)$	$0.076(3)$
$-0.2233(10)$	$1.3621(11)$	$0.2458(4)$	$0.081(4)$
$-0.3154(12)$	$0.8382(13)$	$0.3568(5)$	$0.096(5)$
$-0.2787(12)$	$0.6736(10)$	$0.3454(5)$	$0.121(5)$
$-0.2474(7)$	$0.9283(7)$	$0.3210(2)$	$0.070(2)$
$-0.3655(6)$	$1.3056(8)$	$0.2743(3)$	$0.084(2)$
$-0.0261(5)$	$1.1723(6)$	$0.2770(2)$	$0.059(2)$
$-0.3941(13)$	$0.8796(10)$	$0.3946(5)$	$0.206(6)$

ranging in magnitude from 41.4 to 72.0°. These variations are significantly larger than those of unbridged pyranose rings and are probably because of the cis-fused five-membered ring. The torsion angles at $\mathrm{C}(1)[\mathrm{C}(5)-\mathrm{O}(5)-\mathrm{C}(1)-\mathrm{C}(2)$ and $\mathrm{O}(5)-$ $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)]$ are nearly half those at the opposite atoms [C(4)] in both rings (Table 3). $C(1)$ and $C(4)$ and $C\left(1^{\prime}\right)$ and $C\left(4^{\prime}\right)$ are $-0.52(1)$ and 0.87 (1) \AA, and -0.53 (1) and 0.90 (1) \AA, respectively, from the least-square planes $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(5)-$ $\mathrm{O}(5)$ and $\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{O}\left(5^{\prime}\right)$, respectively. The mean distance out of the plane for $C(1)$ and $C(4)$ of a glucopyranose residue is $\sim 0.66 \AA$ (Ramachandran, Ramakrishnan \& Sasisekharan, 1963). The chair is, thus, flattened at $\mathrm{C}(1)$ and tends towards an envelope conformation, apparently to relieve the strain caused by a tendency for $\mathrm{O}(5)$ and $\mathrm{C}(2)$ to be pushed apart in the formation of the anhydro ring. The puckering parameters of the pyranose rings (Cremer \& Pople, 1975) are given in Table 4.

The five-membered anhydro rings are the least flexible parts of the molecule. The rings have distorted ${ }^{4} E$ conformations with C(4) and C(4^{\prime}) lying 0.70 (1) and 0.72 (1) \AA above the least-squares planes $\mathrm{C}(3)-\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{C}(6)$ and $\mathrm{C}\left(3^{\prime}\right)-\mathrm{O}\left(3^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$, respectively. The distortion is expressed by a nonzero torsion angle $\mathrm{C}(3)-\mathrm{O}(3)-\mathrm{C}(6)-\mathrm{C}(5)$ of 4.9° (3.5° for the primed ring).
The sweet-taste mechanism involves an aqueous solution. Thus the dynamic interplay of hydrogen bonds between water molecules and those of a sweet compound could possibly affect the conformation of

Table 2. Bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ in compound (1) and methyl-3,6-anhydro- α-D-hexopyranosides

Compound (1)				Methyl-3,6-anhydro- α -D-hexopyranosides	
				Galacto*	Gluco \dagger
$\mathrm{C}(1)-\mathrm{C}(2)$	1.510 (9)	$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	1.513 (10)	1.553 (3)	1.50 (3)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.532 (9)	$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	1.507 (12)	1.534 (4)	1.57 (3)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.491 (10)	$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	1.508 (13)	1.535 (4)	1.41 (4)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.500 (10)	$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	1.519 (13)	1.526 (3)	1.56 (3)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.497 (10)	$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	1.492 (13)	1.518 (4)	1.53 (4)
$\mathrm{O}(1)-\mathrm{C}(1)$	1.402 (8)	$\mathrm{O}(1)-\mathrm{C}\left(1^{\prime}\right)$	1.378 (8)	1.374 (4)	1.38 (2)
$\mathrm{O}(2)-\mathrm{C}(2)$	1.442 (8)	$\mathrm{O}\left(2^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	1.431 (10)	1.432 (4)	1.50 (2)
$\mathrm{O}(3)-\mathrm{C}(3)$	1.425 (8)	$\mathrm{O}\left(3^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	1.421 (12)	1.429 (3)	1.50 (3)
$\mathrm{O}(3)-\mathrm{C}(6)$	1.444 (9)	$\mathrm{O}\left(3^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	1.439 (10)	1.449 (4)	1.44 (3)
$\mathrm{O}(5)-\mathrm{C}(1)$	1.442 (8)	$\mathrm{O}\left(5^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)$	1.408 (10)	1.449 (3)	1.40 (3)
$\mathrm{O}(5)-\mathrm{C}(5)$	1.433 (8)	$\mathrm{O}\left(5^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	1.434 (9)	1.449 (3)	1.49 (2)
$\mathrm{O}(2)-\mathrm{C}(7)$	1.373 (8)	$\mathrm{O}\left(2^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)$	1.286 (13)		
$\mathrm{O}(7)-\mathrm{C}(7)$	1.182 (9)	$\mathrm{O}\left(7^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)$	1.162 (16)		
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}\left(1^{\prime}\right)$	115.6 (5)			114.9 (2)	115 (2)
$\mathrm{C}(1)-\mathrm{O}(5)-\mathrm{C}(5)$	113.3 (5)	$\mathrm{C}\left(1^{\prime}\right)-\mathrm{O}\left(5^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	113.9 (9)	107.1 (2)	116 (2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	109.6 (5)	$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	109.8 (6)	108.9 (2)	108 (2)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	110.2 (6)	$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	108.8 (7)	109.3 (2)	118 (2)
$\mathrm{C}(2)-\mathrm{O}(2)-\mathrm{C}(7)$	117.1 (5)	$\mathrm{C}\left(2^{\prime}\right)-\mathrm{O}\left(2^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)$	119.9 (7)		
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	98.6 (6)	$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	97.8 (7)	97.7 (2)	100 (2)
$\mathrm{C}(3)-\mathrm{O}(3)-\mathrm{C}(6)$	107.4 (5)	$\mathrm{C}\left(3^{\prime}\right)-\mathrm{O}\left(3^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	108.3 (6)	108.3 (2)	105 (2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	101.2 (6)	$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	101.5 (7)	101.8 (2)	97 (2)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	108.7 (5)	$\mathrm{O}(1)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	109.1 (6)	108.0 (2)	108 (2)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(5)$	106.6 (5)	$\mathrm{O}(1)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{O}\left(5^{\prime}\right)$	109.2 (5)	107.1 (2)	108 (2)
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(1)$	110.4 (5)	$\mathrm{O}\left(2^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)$	108.5 (6)	111.9 (2)	108 (2)
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	107.6 (5)	$\mathrm{O}\left(2^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	108.8 (7)	107.4 (2)	103 (2)
$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{O}(7)$	122.8 (7)	$\mathrm{O}\left(2^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)-\mathrm{O}\left(7^{\prime}\right)$	123.7 (11)		
$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	109.9 (2)	$\mathrm{O}\left(2^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)$	112.9 (9)		
$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(2)$	106.7 (6)	$\mathrm{O}\left(3^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	109.1 (7)	108.5 (2)	104 (2)
$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(4)$	104.7 (5)	$\mathrm{O}\left(3^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	104.0 (7)	104.8 (2)	104 (2)
$\mathrm{O}(3)-\mathrm{C}(6)-\mathrm{C}(5)$	105.1 (6)	$\mathrm{O}\left(3^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	105.2 (7)	105.4 (2)	107 (2)
$\mathrm{O}(5)-\mathrm{C}(1)-\mathrm{C}(2)$	113.0 (5)	$\mathrm{O}\left(5^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	113.0 (5)	112.8 (2)	116 (2)
$\mathrm{O}(5)-\mathrm{C}(5)-\mathrm{C}(4)$	108.9 (5)	$\mathrm{O}\left(5^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	107.8 (7)	107.0 (2)	109 (2)
$\mathrm{O}(5)-\mathrm{C}(5)-\mathrm{C}(6)$	112.9 (6)	$\mathrm{O}\left(5^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	113.0 (6)	112.8 (2)	111 (2)
$\mathrm{O}(7)-\mathrm{C}(7)-\mathrm{C}(8)$	127.3 (7)	$\mathrm{O}\left(7^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)$	122.5 (11)		
* Campbell \& Harding (1972). \dagger Lindberg, Lindberg \& Svensson (1973).					

Table 3. Selected torsion angles (${ }^{\circ}$) of compound (1) and the pyranose ring in 3,$6 ; 1^{\prime}, 4^{\prime} ; 3^{\prime}, 6^{\prime}$-trianhydrosucrose

Within the 3,6 -anhydro- α-D-glucopyranoside rings of (1)

$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	57.3 (0.7)	$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	59.1 (0.9)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(3)$	- 55.8 (0.7)	$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{O}\left(3^{\prime}\right)$	- 53.8 (0.8)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	-70.5 (0.6)	$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	- 72.0 (0.9)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(3)-\mathrm{C}(6)$	92.0 (0.6)	$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{O}\left(3^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	89.7 (0.7)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	-45.5 (0.6)	$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	-45.3 (0.8)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(5)$	73.6 (0.6)	$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{O}\left(5^{\prime}\right)$	73.7 (0.8)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(3)$	32.1 (0.7)	$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{O}\left(3^{\prime}\right)$	31.4 (0.8)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(5)-\mathrm{C}(1)$	-64.8 (0.7)	$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{O}\left(5^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)$	-64.8 (0.8)
$\mathrm{C}(5)-\mathrm{O}(5)-\mathrm{C}(1)-\mathrm{C}(2)$	46.3 (0.7)	$\mathrm{C}\left(5^{\prime}\right)-\mathrm{O}\left(5^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	46.7 (0.8)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(3)-\mathrm{C}(3)$	-4.9 (0.7)	$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{O}\left(3^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	-3.5 (0.8)
$\mathrm{O}(5)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-41.4 (0.7)	$\mathrm{O}\left(5^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	-42.9 (0.8)
Outside the 3,6-anhydro- α-D-glucopyranoside rings of (1)			
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	- 159.5 (0.5)	$\mathrm{O}(1)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	- 164.5 (0.6)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	-41.1 (0.7)	$\mathrm{O}(1)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{O}\left(2^{\prime}\right)$	-45.7 (0.7)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(5)-\mathrm{C}(5)$	165.6 (0.5)	$\mathrm{O}(1)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{O}\left(5^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	168.3 (0.6)
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	-62.8 (0.7)	$\mathrm{O}\left(2^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	-59.4 (0.9)
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(3)$	- 175.8 (0.5)	$\mathrm{O}\left(2^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{O}\left(3^{\prime}\right)$	- 172.4 (0.6)
$\mathrm{O}(5)-\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}\left(1^{\prime}\right)$	62.9 (0.6)	$\mathrm{O}\left(5^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{O}(1)-\mathrm{C}(1)$	66.6 (0.7)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}\left(1^{\prime}\right)$	- 175.0 (0.5)	$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{O}(1)-\mathrm{C}(1)$	- 169.5 (0.5)

* Isaac \& Kennard (1972).

Outside the 3,6 -anhydro- α-D-glucopyranoside rings of (1)

Pyranose ring of 3,$6 ; 1^{\prime} 4^{\prime} ; 3^{\prime}, 6^{\prime}-$
trianhydrosucrose* 58.5

$$
-67.3
$$

$$
70.2
$$

$$
-68.8
$$

$$
55.0
$$

-49.1

Table 4. Puckering parameters (Cremer \& Pople, 1975) for the pyranose and anhydride ring in 2,2'-di-

O-acetyl-3,6;3', 6^{\prime}-dianhydro-4,4'-dideoxy- α, α trehalose

The values in parentheses are those for the ring with the primed atoms.

> Pyranose ring

$q_{2}(\AA)$	0.226	(0.244)	0.459	(0.465)
$q_{3}(\AA)$	-0.595	(-0.596)		-
$\theta\left({ }^{\circ}\right)$	158.9	(158.3)	78.5	-
$\varphi\left({ }^{\circ}\right)$	65.2	(62.4)	0.458	(0.469)
$Q(\AA)$	0.637	(0.660)		

Computations were performed using the SHELXTL-Plus (Sheldrick, 1990) crystallographic software package.
the compound in solution so that it may not necessarily be the same as when in crystalline form. Nevertheless, the 3,6-anhydro derivatives of methyl- α-D-glucopyranoside and α, α-trehalose have been found to be devoid of sweetness (Lee \& Birch, 1975) and this was suggested to be caused by strong intramolecular hydrogen bonding between the axial $O(2)$ and $O(4) \mathrm{OH}$ groups as shown in the crystal structure of methyl-3,6-anhydro- α-D-glucopyranoside (Lindberg, Lindberg \& Svensson, 1973). These OH groups are, therefore, not available for interaction with a complementary $A \mathrm{H}, B$ system of the taste receptor. Methyl-3,6-dianhydro-4-deoxy- α-D-xylohexopyranoside and the corresponding α, α-trehalose analogue are also devoid of sweet taste (Lee \& Birch, 1975). Although the $\mathrm{C}(4) \mathrm{OH}$ is absent in 3,6-dianhydro-4-deoxy-hexopyranoside structures, the X-ray data of (1) show that $\mathrm{O}(2)$ and $\mathrm{O}\left(2^{\prime}\right)$ are $\sim 3.0 \AA$ from their respective ring O atoms, which is the optimum A-to- B distance for a sweet $A \mathrm{H}, B$ glucophore. However, $\mathrm{O}(2)$ and $\mathrm{O}\left(2^{\prime}\right)$ are also $\sim 2.6 \AA$ from the anomeric O atom. In the unsubstituted derivative, it is, therefore, possible that $\mathrm{OH}(2)$ and $\mathrm{OH}\left(2^{\prime}\right)$ form strong intramolecular hydrogen bonds to the anomeric O atom. The molecule will then have no $A \mathrm{H}, B$ glucophore and thus be devoid of sweet taste.

The γ function is viewed as a function that facilitates the accession of the molecule to a taste receptor and may be important for sweetness intensity. Although its role is generally agreed to be minimal, it is of structural interest to modify the γ effect. The removal of the $\mathrm{C}(4) \mathrm{OH}$ group makes this position a potential γ site, but with the absence of an $A \mathrm{H}, B$ system this is mere speculation. This is presently being investigated.

Experimental

Crystal data
$\begin{array}{ll}\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{9} & \text { Mo } K \alpha \text { radiation } \\ M_{r}=358.3 & \lambda=0.71069 \AA\end{array}$

Orthorhombic
$P 2_{1} 2_{1} 2_{1}$
$a=8.231$ (4) \AA
$b=8.792(5) \AA$
$c=23.60(2) \AA$
$V=1708(2) \AA^{3}$
$Z=4$
$D_{x}=1.393 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection
Siemens $R 3 \mathrm{~m} / V$ diffractome-
ter
ω scans
Absorption correction: none
1765 measured reflections
1765 independent reflections
1065 observed reflections
[$F>3.0 \sigma(F)$]

Refinement

Refinement on F
$R=0.0597$
$w R=0.0537$
$S=1.31$
1065 reflections
227 parameters
H-atom parameters not refined
$w=1 /\left[\sigma^{2}(F)+0.0005 F^{2}\right]$
$(\Delta / \sigma)_{\max }=0.248$

Cell parameters from 17
reflections
$\theta=4.3-10.5^{\circ}$
$\mu=0.115 \mathrm{~mm}^{-1}$
$T=297 \mathrm{~K}$
Prism
$0.30 \times 0.30 \times 0.25 \mathrm{~mm}$
Colourless
Crystal source: recrystallized from ethanol three times
$\theta_{\text {max }}=25^{\circ}$
$h=0 \rightarrow 9$
$k=0 \rightarrow 10$
$l=0 \rightarrow 27$
2 standard reflections monitored every 98 reflections intensity variation: $\pm 1.5 \%$

The authors wish to thank the National University of Singapore for financial support and Miss G. K. Tan for technical assistance.

Lists of structure factors, anisotropic displacement parameters, H -atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71584 (16 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HL1037]

References

Berman, H. M., Chu, S. S. C. \& Jeffrey, G. A. (1967). Science, 157, 1576-1577.
Birch, G. G., Lee, C. K. \& Richardson, A. C. (1974). Carbohydr. Res. 36, 97-109.
Brown, G. M., Rohrer, D. C., Berking, B., Beevers, A. C., Gould, R. O. \& Simpson, R. (1972). Acta Cryst. B28, 3145-3158.

Campbell, J. W. \& Harding, M. M. (1972). J. Chem. Soc. Perkin Trans. 2, pp. 1721-1723.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354 1358.

Isaac, N. W. \& Kennard, C. H. L. (1972). J. Chem. Soc. Perkin Trans. 2, pp. 582-585.
Jeffrey, G. A. \& Nanni, R. (1985). Carbohydr. Res. 137, 21-30.
Kier, L. B. (1972). J. Pharm. Sci. 61, 1394-1397.

Lee, C. K. \& Birch, G. G. (1975). J. Food Sci. 40, 784-787.
Lee, C. K. \& Koh, L. L. (1993). Carbohydr. Res. In the press.
Lindberg, B., Lindberg, B. \& Svensson, S. (1973). Acta Chem. Scand. 27, 373-374.
Ramachandran, G. N., Ramakrishnan, C. \& Sasisekharan, V. (1963). In Aspects of Protein Structure, edited by G. N. Ramachandran. New York: Academic Press.
Shallenberger, R. S. \& Acree, T. E. (1967). Nature (London), 216, 480-482.
Sheldrick, G. M. (1990). SHELXTL-Plus. Release 4.0 for Siemens $R 3 \mathrm{~m} / V$ crystallographic system. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Taga, T., Senma, M. \& Osaki, K. (1972). Acta Cryst. B28, 3258-3263.

Acta Cryst. (1994). C50, 601-603

3,8 α-Dihydroxyestra-1,3,5(10),6-tetraen-17-one

Edmund W. Czerwinski*
Department of Human Biological Chemistry and Genetics, The University of Texas Medical Branch, Galveston, Texas 77555-0653, USA
Zhisong Cao and Joachim Liehr
Department of Pharmacology, The University of Texas Medical Branch, Galveston, Texas 77555-0653, USA

(Received 27 April 1993; accepted 5 July 1993)

Abstract

The molecular parameters of the title compound, $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3}$, are all within normal limits. The A / B ring junction is planar and the C / D junction is trans, as expected. However, the B / C junction is cis with an interplanar angle of 65.1 (2) ${ }^{\circ}$. There are only two intermolecular contacts involving the 8α-hydroxyl of one molecule and the 3 -hydroxyl and 17-keto O atoms on two symmetry related molecules.

Comment

The title compound (I) was synthesized as described by Cao \& Liehr (1993). The crystal structure study was undertaken to ascertain the conformation of the

(I)
compound and to determine on which face of the steroid skeleton the 8 -hydroxyl group was located. Fig. 1 shows the structure of the molecule in the asymmetric unit with the thermal vibration ellipsoids of the non-H atoms. Bond lengths, bond angles and torsion angles of the non-H atoms are given in Table 2 and are within the range of expected values (Duax \& Norton, 1975; Griffin, Duax \& Weeks, 1984). The packing of the molecules is shown in Fig. 2. All intermolecular distances correspond to normal van der Waals interactions. The only intermolecular contacts involve O 8 with $\mathrm{O} 3\left(-x, y-\frac{1}{2}, \frac{1}{2}-z\right)$ $[2.715(5) \AA] \quad$ and $\mathrm{O} 17\left(\frac{1}{2}-x, \quad 2-y, \quad z-\frac{1}{2}\right)$ [2.804(5) \AA] resulting in an $\mathrm{O} 3 \cdots \mathrm{O} 8 \cdots \mathrm{O} 7$ angle of 92.3 (2) ${ }^{\circ}$. Steroid ring $A(\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 10)$ possesses bond parameters consistent with a benzene ring and is planar to within experimental error. The O3 hydroxyl group is coplanar with ring A. The asymmetry parameters defined by Duax \& Norton (1975) for ring A range from 0.6 to 2.8° with $\langle\tau\rangle=$ 1.2°. Ring B (C5, C6, C7, C8, C9, C10) adopts a distorted sofa conformation largely due to the unsaturated $\mathrm{C} 5-\mathrm{C} 10$ and $\mathrm{C} 6-\mathrm{C} 7$ bonds. C 9 is nearly coplanar with the plane formed by the atoms of ring A and $\mathrm{O} 3 . \mathrm{C} 7$ and C 8 deviate from this plane towards the α face of the molecule. The asymmetry parameters are $\Delta C_{2}^{5,6}=7.2^{\circ}, \Delta C_{s}^{6}=14.9^{\circ}$ and $\Delta C_{s}^{7}=$ 39.9°, with $\langle\tau\rangle=22.8^{\circ}$. These data indicate that ring B is distorted from the $\mathrm{C} 9 \alpha, \mathrm{C} 10 \beta$-half-chair conformation ($\Delta C_{2}=0^{\circ}$) towards a $\mathrm{C} 8 \alpha$-sofa conformation. Ring $C(\mathrm{C} 8, \mathrm{C} 9, \mathrm{C} 11, \mathrm{C} 12, \mathrm{C} 13, \mathrm{C} 14)$ does not have any unusual substituents and assumes the commonly found chair conformation ($\Delta C_{2}^{0,11}=2.5^{\circ}$, $\left.\Delta C_{s}^{1 \mathrm{I}}=3.0^{\circ},\langle\tau\rangle=55.4^{\circ}\right)$.

Fig. 1. Two orthogonal views of the molecular structure of the estratetraene in the asymmetric unit showing the numbering scheme and the thermal vibration ellipsoids of the non-H atoms. The thickest lines denote the double bonds.

